Article

Park Air Profiles - Isle Royale National Park

Air Quality at Isle Royale National Park

Most visitors expect clean air and clear views in parks. Isle Royale National Park (NP), Michigan, is a heavily forested, remote island in Lake Superior that experiences relatively good air quality. However, air pollution from mainland sources in Canada and the Midwest, including pollutants from industries along the Ohio River Valley, does affect the park. Air pollutants blown into the park can harm natural and scenic resources such as soils, surface waters, plants, wildlife, and visibility. The National Park Service works to address air pollution effects at Isle Royale NP, and in parks across the U.S., through science, policy and planning, and by doing our part.

Nitrogen and Sulfur

Aerial view of Locke Point
Visitors come to Isle Royale NP to explore scenic views of the remote island in Lake Superior, as well as to enjoy fishing, scuba diving, and boating.

Nitrogen (N) and sulfur (S) compounds deposited from the air may have harmful effects on ecosystem processes. Healthy ecosystems can naturally buffer a certain amount of pollution, but once a threshold is passed the ecosystem may respond negatively. This threshold is the critical load, or the amount of pollution above which harmful changes in sensitive ecosystems occur (Porter 2005). N and S deposition change ecosystems through eutrophication (N deposition) and acidification (N + S deposition). Eutrophication increases soil and water nutrients which causes some species to grow more quickly and changes community composition. Ecosystem sensitivity to nutrient N enrichment at Isle Royale National Park (ISRO) relative to other national parks is very low (Sullivan et al. 2016); for a full list of N sensitive ecosystem components, see: NPS ARD 2019. Acidification leaches important cations from soils, lakes, ponds, and streams which decreases habitat quality. Ecosystem sensitivity to acidification at ISRO relative to other national parks is high (Sullivan et al. 2016); to search for acid-sensitive plant species, see: NPSpecies.

From 2017-2019 total N deposition in ISRO ranged from 4.0 to 6.5 kg-N ha-1 yr-1 and total S deposition ranged from 1.6 to 2.4 kg-S ha-1 yr-1 based on the TDep model (NADP, 2018). See the conditions and trends website for park-specific information on N and S deposition at ISRO.

Boreal lakes—including Sargent and Richie—may be particularly sensitive to N enrichment, which could rapidly affect algal communities and lake biodiversity (Saros 2008; Sullivan et al. 2016).

At ISRO, thin, undeveloped soils, and low buffering capacity result in surface waterways and soils that are vulnerable to acidification (Sullivan et al. 2016). S is a concern at ISRO because it plays an essential role in the methylation of mercury, leading to toxic accumulation of methylmercury in fish and wildlife.

Epiphytic macrolichen community responses

Epiphytic macrolichens grow on tree trunks, branches, and boles. Since these lichens grow above the ground, they obtain all their nutrients directly from precipitation and the air. Many epiphytic lichen species have narrow environmental niches and are extremely sensitive to changes in air pollution. Geiser et al. (2019) used a U.S. Forest Service national survey to develop critical loads of nitrogen (N) and critical loads of sulfur (S) to prevent more than a 20% decline in four lichen community metrics: total species richness, pollution sensitive species richness, forage lichen abundance, and cyanolichen abundance.

McCoy et al. (2021) used forested area from the National Land Cover Database to estimate the impact of air pollution on epiphytic lichen communities. Forested area makes up 380 km2 (17.1%) of the land area of Isle Royale National Park.

  • N deposition exceeded the 3.1 kg-N ha-1 yr-1 critical load to protect N-sensitive lichen species richness in 100% of the forested area.
  • S deposition was below the 2.7 kg-S ha-1 yr-1 critical load to protect S-sensitive lichen species richness in every part of the forested area.

For exceedances of other lichen metrics and the predicted decline of lichen communities see Appendices A and B of McCoy et al. (2021).

Additional modeling was done on 459 lichen species to test the combined effects of air pollution and climate gradients (Geiser et al. 2021). A critical load indicative of initial shifts from pollution-sensitive toward pollution-tolerant species occurred at 1.5 kg-N ha-1 yr-1 and 2.7 kg-S ha-1 yr-1 even under changing climate regimes.

Plant species response

Plants vary in their tolerance of eutrophication and acidification, and some plant species respond to nitrogen (N) or sulfur (S) pollution with declines in growth, survival, or abundance on the landscape. Horn et al. (2018) used the U.S. Forest Service national forest survey to develop critical loads of N and critical loads of S to prevent declines in growth or survival of sensitive tree species. Clark et al. (2019) used a database of plant community surveys to develop critical loads of N and critical loads of S to prevent a decline in abundance of sensitive herbaceous plant species. According to NPSpecies, Isle Royale National Park contains:

  • 2 N-sensitive tree species and 68 N-sensitive herbaceous species.
  • 6 S-sensitive tree species and 55 S-sensitive herbaceous species.

Change in N and S deposition from 2000 to 2021

The maps below show how the spatial distribution of estimated Total N and Total S deposition in ISRO has changed from 2000-2002 to 2019-2021 (TDep MMF version 2022.02). Slide the arrows in the middle of the image up and down to compare N and S deposition between the two years (Yearly Data).

  • Minimum N deposition decreased from 4.9 to 4.0 kg-N ha-1 yr-1 and maximum N deposition decreased from 7.7 to 5.9 kg-N ha-1 yr-1.
  • Minimum S deposition decreased from 3.3 to 0.9 kg-S ha-1 yr-1 and maximum S deposition decreased from 4.0 to 1.2 kg-S ha-1 yr-1.
Two maps showing ISRO boundaries. The left map shows the spatial distribution of estimated total nitrogen deposition levels from 2000-2002. The right map shows the spatial distribution of estimated total sulfur deposition levels from 2000-2002. Two maps showing ISRO boundaries. The left map shows the spatial distribution of estimated total nitrogen deposition levels from 2000-2002. The right map shows the spatial distribution of estimated total sulfur deposition levels from 2000-2002.

Estimated total nitrogen and sulfur deposition levels from 2000-2002 (top) compared to the 2019-2021 (bottom) average at ISRO. Estimated values were developed using the National Atmospheric Deposition Program - Total Deposition (TDep) approach that combines measured and modeled data. Estimated values are valuable for analyzing gradients of deposition and the resulting ecosystem risks where monitors are not present.

Persistent Pollutants

Pollutants like mercury and pesticides are concerning because they are persistent and toxic in the environment. These contaminants can travel in the air thousands of miles away from the source of pollution, even depositing in protected places like national parks. In addition, while some of these harmful pollutants may be banned from use, historically contaminated sites continue to endure negative environmental consequences.

When deposited, airborne mercury and other toxic air contaminants are known to harm wildlife like birds and fish, and cause human health concerns. Many of these substances enter the food chain and accumulate in the tissue of organisms causing reduced reproductive success, impaired growth and development, and decreased survival.Isle Royale NP is particularly sensitive to mercury pollution. The abundance of wetlands, low pH lakes, complex food webs, and predatory fish creates an environment susceptible to the bioaccumulation of toxics. Power plants and other sources of air pollution on the mainland contribute to the deposition of toxics at Isle Royale NP.

The NPS Air Resources Division reports on park conditions and trends for mercury. Visit the webpage to learn more.

Visibility

View of water at ISRO
Clean, clear air is essential to appreciating the scenic vistas at Isle Royale NP.

Visitors come to Isle Royale NP to enjoy the spectacular remote islands in the vastness of Lake Superior, with forests, inland lakes, and opportunities to see wildlife. Park vistas are sometimes obscured by haze, reducing how well and how far people can see. Visibility reducing haze is caused by tiny particles in the air, and these particles can also affect human health. Many of the same pollutants that ultimately fall out as nitrogen and sulfur deposition contribute to this haze. Additionally, organic compounds, soot, and dust reduce visibility. Smoke from nearby forest fires also contributes to particulate matter in the region. Significant improvements in park visibility have been documented since the 2000’s. Overall, visibility in the park still needs improvement to reach the Clean Air Act goal of no human caused impairment.

Visibility effects:

  • Reduced visibility, at times, due to human-caused haze and fine particles of air pollution, including dust;
  • Reduction of the average natural visual range from about 115 miles (without pollution) to about 100 miles because of pollution at the park;
  • Reduction of the visual range to below 45 miles on very hazy days.

Visit the NPS air quality conditions and trends website for park-specific visibility information. Isle Royale NP has been monitoring visibility since 1988. Explore scenic vistas of Lake Superior and other sites in the Great Lakes via live webcams, and explore air monitoring »

Ground-Level Ozone

Butterfly on milkweed plant
Milkweed is one of the ozone sensitive species found at Isle Royale NP.

At ground level, ozone is harmful to human health and the environment. Ground-level ozone does not come directly from smokestacks or vehicles, but instead is formed when other pollutants, mainly nitrogen oxides and volatile organic compounds, react in the presence of sunlight.

Over the course of a growing season, ozone can damage plant tissues making it harder for plants to produce and store food. It also weakens plants making them less resistant to disease and insect infestations. Some plants are more sensitive to ozone than others. Ozone-sensitive plants in Isle Royale NP include Apocynum androsaemifolium (Spreading dogbane), Ascelpias syriaca (Common milkweed), and Prunus serotina (Black cherry). A risk assessment that considered ozone exposure, soil moisture, and sensitive plant species concluded that plants in Isle Royale NP were at low risk of damage to plant leaves (see network report: Kohut 2004). Ozone injury to plants has not been documented in regions near Isle Royale NP (Swackhamer and Hornbuckle 2004). Search for more ozone-sensitive plant species found at Isle Royale NP.

Visit the NPS air quality conditions and trends website for park-specific ozone information.

Explore Other Park Air Profiles

There are 47 other Park Air Profiles covering parks across the United States and its territories.

References

Bowerman, W., Moore, L., Leith, K., Drouillard, K., Sikarskie, J., Best, D., Allan, T., Garvon, J., Scharf, W., Perlinger, J., and Romanski, M. 2011. Concentrations of Environmental Contaminants in Herring Gull Eggs from Great Lakes Colonies in Michigan, 2002–2006. MI/DEQ/WRD—12/007. Michigan Department of Environmental Quality: Lansing, MI. 68 pp. https://www.michigan.gov/egle/-/media/Project/Websites/egle/Documents/Programs/WRD/SWAS/wildlife-2002-2006-gull.pdf?rev=545d8411e17045dcbe8419cf054a1cae&hash=4F8CE17C405392BA8D7371A3A61CEFC6

Cain, A., Morgan, J. T., and Brooks, N. 2011. Mercury policy in the Great Lakes states: past successes and future opportunities. Ecotoxicology 20: 1500–1511. https://doi.org/10.1007/s10646-011-0764-4

Chernyk, S., Hickey, J., and Benoche, I. 2002. PBDEs in Great Lakes Biota. Proceedings from Society of Environmental Toxicology and Chemistry: North America. Salt Lake City, UT: 16–20.

Clark, C.M., Simkin, S.M., Allen, E.B. et al. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nat. Plants 5, 697–705 (2019). https://doi.org/10.1038/s41477-019-0442-8

Drevnick P. E., Roberts, A. P., Otter, R. R., Hammerschmidt, C. R. Klaper, R., and Oris, J. T. 2008. Mercury toxicity in livers of northern pike (Esox lucius) from Isle Royale, USA. Comparative Biochemistry Physiology Part C 147: 331–338. https://irma.nps.gov/DataStore/Reference/Profile/660638

Eagles-Smith, C.A., S.J. Nelson., C.M. Flanagan Pritz, J.J. Willacker Jr., and A. Klemmer. 2018. Total Mercury Concentrations in Dragonfly Larvae from U.S. National Parks (ver. 6.0, June 2021): U.S. Geological Survey data release. https://doi.org/10.5066/P9TK6NPT

Eagles-Smith, CA, JJ Willacker, CM Flanagan Pritz, AC Ellsworth. 2019. Total Mercury Concentrations in Fish from 31 National Parks, USA, 2015-2016. USGS Sensitive Data Release. https://irma.nps.gov/DataStore/Reference/Profile/2260288

Eagles-Smith, C.A., J.J. Willacker, S.J. Nelson, C.M. Flanagan Pritz, D.P. Krabbenhoft, C.Y. Chen, J.T. Ackerman, E.H. Campbell Grant, and D.S. Pilliod. 2020. Dragonflies as biosentinels of mercury availability in aquatic food webs of national parks throughout the United States. Environmental Science and Technology 54(14):8779-8790. https://doi.org/10.1021/acs.est.0c01255

Elliott SM, Brigham ME, Lee KE, Banda JA, Choy SJ, et al. 2017. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PLOS ONE 12(9): e0182868. https://doi.org/10.1371/journal.pone.0182868

Elliott, Sarah M. and David D. VanderMeulen. 2017. A regional assessment of chemicals of concern in surface waters of four Midwestern United States national parks. Science of The Total Environment 579:1726-1735. https://doi.org/10.1016/j.scitotenv.2016.11.114

Evers, D. C., Kaplan, J. D., Meyer, M. W., Reaman, P. S., Braselton, W. E., Major, A., and Burgess, N., Scheuhammer, A. M. 1998. Geographic trend in mercury measured in common loon feathers and blood. Environmental Toxicology & Chemistry 17 (2): 173–183. https://irma.nps.gov/DataStore/Reference/Profile/52731

Evers, D. C., Wiener, J. G., Driscoll, C. T., Gay, D. A., Basu, N., Monson, B. A., Lambert, K. F., Morrison, H. A., Morgan, J. T., Williams, K. A., and Soehl, A. G. 2011a. Great Lakes Mercury Connections: The Extent and Effects of Mercury Pollution in the Great Lakes Region. Biodiversity Research Institute. Gorham, Maine. Report BRI 2011—18. 44 pp. Available at http://www.briloon.org/our-science-services/research-centers/center-for-mercury-studies-detail-page/mercury-center-opening-page/center-for-mercury-project-index/mercury-connections-landing-page/mercury-in-the-great-lakes-region.

Evers, D. C., Williams, K. A., Meyer, M. W., Scheuhammer, A. M., Schoch, N., Gilbert, A., Siegel, L., Taylor, R. J., Poppenga, R. and Perkins, C. R. 2011b. Spatial gradients of methylmercury for breeding common loons in the Laurentian Great Lakes region. Ecotoxicology 20: 1609–1625. https://doi.org/10.1007/s10646-011-0753-7

Geiser, Linda & Nelson, Peter & Jovan, Sarah & Root, Heather & Clark, Christopher. (2019). Assessing Ecological Risks from Atmospheric Deposition of Nitrogen and Sulfur to US Forests Using Epiphytic Macrolichens. Diversity. 11. 87. 10.3390/d11060087.

Geiser, Linda & Root, Heather & Smith, Robert & Jovan, Sarah & Clair, Larry & Dillman, Karen. (2021). Lichen-based critical loads for deposition of nitrogen and sulfur in US forests. Environmental Pollution. 291. 118187. 10.1016/j.envpol.2021.118187.

Gorski, P. R., Cleckner, L. B., Hurley, J. P., Sierszen, M. E., and Armstrong, D. E. 2003. Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA. Science of the Total Environment 304 (1–3): 327–348. https://irma.nps.gov/DataStore/Reference/Profile/558137

Haro RJ and Others. 2013. Burrowing Dragonfly Larvae as Biosentinels of Methylmercury in Freshwater Food Webs. Environmental Science & Technology. 47(15):8148-8156. https://irma.nps.gov/DataStore/Reference/Profile/2230258

Hermanson, M. and Hites, R. 1990. Polychlorinated biphenyls in tree bark. Environmental Science & Technology 24: 666–671. https://irma.nps.gov/DataStore/Reference/Profile/94377

Horn KJ, Thomas RQ, Clark CM, Pardo LH, Fenn ME, Lawrence GB, et al. (2018) Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S.. PLoS ONE 13(10): e0205296. https://doi.org/10.1371/journal.pone.0205296

Kohut, R. 2004. Assessing the Risk of Foliar Injury from Ozone on Vegetation in Parks in the Great Lakes Network. Available at https://irma.nps.gov/DataStore/Reference/Profile/2181290.

McCoy K., M. D. Bell, and E. Felker-Quinn. 2021. Risk to epiphytic lichen communities in NPS units from atmospheric nitrogen and sulfur pollution: Changes in critical load exceedances from 2001‒2016. Natural Resource Report NPS/NRSS/ARD/NRR—2021/2299. National Park Service, Fort Collins, Colorado. https://doi.org/10.36967/nrr-2287254.

[NADP] National Atmospheric Deposition Program. 2018. NTN Data. Accessed January 20, 2022. Available at http://nadp.slh.wisc.edu/NADP/

[NPS] National Park Service, Inventory & Monitoring Program. 2010. Monitoring Persistent Contaminants at Isle Royale. Great Lakes Network Resources Brief. Available at: https://irma.nps.gov/DataStore/Reference/Profile/2196640

[NPS] National Park Service. 2022. Fish Consumption Advisories. https://www.nps.gov/subjects/fishing/fish-consumption-advisories.htm

Porter, E., Blett, T., Potter, D.U., Huber, C. 2005. Protecting resources on federal lands: Implications of critical loads for atmospheric deposition of nitrogen and sulfur. BioScience 55(7): 603–612. https://doi.org/10.1641/0006-3568(2005)055[0603:PROFLI]2.0.CO;2

Risch M. R., Gay, D. A., Fowler, K. K., Keeler, G. J., Backus, S. M., Blanchard, P., Barres, J. A., Dvonch, J. T. 2012. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002–2008. Environmental Pollution 161: 261–271. https://doi.org/10.1016/j.envpol.2011.05.030

Sandheinrich, M. B., Bhavsar, S. P., Bodaly, R. A., Drevnick, P. E., and Paul, E. A. 2011. Ecological risk of methylmercury to piscivorous fish of the Great Lakes region. Ecotoxicology 20: 1577–1587.

Saros, J. E. 2008. Determine critical nitrogen loads to boreal lake ecosystems using the response of phytoplankton. NPS Implementation Plan. 10 pp.

Scheuhammer, A. M. and Blancher, P. J. 1994. Potential risk to common loons (Gavia immer) from methylmercury exposure in acidified lakes. Hydrobiologia 279/280: 445–455.

Sullivan, T. J. 2016. Air quality related values (AQRVs) in national parks: Effects from ozone; visibility reducing particles; and atmospheric deposition of acids, nutrients and toxics. Natural Resource Report NPS/NRSS/ARD/NRR—2016/1196. National Park Service, Fort Collins, CO.

Swackhamer, D. L. and Hornbuckle, K. C. 2004. Assessment of Air Quality and Air Pollutant Impacts in Isle Royale National Park and Voyageurs National Park. NPS Report. Available at https://irma.nps.gov/DataStore/Reference/Profile/575135.

Thurman, E. M. and Cromwell, A. E. 2000. Atmospheric Transport, Deposition, and Fate of Triazine Herbicides and their Metabolites in pristine areas at Isle Royale National Park. Environmental Science and Technology 34 (15): 3079–3085.

Vucetich, L. M., Outridge, P. M., Peterson, R. O., Eide, R., and Isrenn, R. 2009. Mercury, lead and lead isotope ratios in the teeth of moose (Alces alces) from Isle Royale, U.S. Upper Midwest, from 1952 to 2002. Journal of Environmental Monitoring 11 (7): 1352–1359.

Vucetich, L. M., Vucetich, J. A., Cleckner, L. B., Gorski, P. R., and Peterson, R. O. 2001. Mercury concentrations in deer mouse (Peromyscus maniculatus) tissues from Isle Royale National Park. Environmental Pollution 114 (1): 113–118.

Part of a series of articles titled Park Air Profiles.

Isle Royale National Park

Last updated: August 17, 2023