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Abstract 

We developed a spatial daily rainfall model that is designed specifically to fill in missing 

rainfalls in the subtropical area where convective storms are dominant. Because the spatial 

pattern of daily rainfall occurrence is complex and nonlinear compared with those of frontal 

storms, we adopted neural network-oriented pattern classifiers to determine daily wet or dry 

(rainy or no-rainy) conditions. The model uses a two-step approach as most Markov-type daily 

rainfall models do: First, the classifiers differentiate daily wet or dry areas based on available 

recorded rainfalls, from which wet or dry condition at each missing site is determined. Then, a 

regression model estimates the amount of missing rainfall at each wet site determined at the first 

step. The following four neural network-based classifiers were tested using the measured rainfall 

data in South Florida: Levenberg-Marquardt Backpropagation, Automated Regulation 

Backpropagation, Learning Vector Quantification, and Probabilistic Neural Network approaches. 

The result reveals that the classifier based on a probabilistic neural network approach is superior 

to the others. Also, a stepwise regression performs better for estimating the amount of rainfalls 

than the other competing approaches we tested. We validated that the proposed model produces 

accurate and unbiased daily rainfall estimates. 

 

1. Introduction 

Missing data are very common in most hydrologic records. They are due to bad weather 

condition, equipment mal-function, data contamination, or data processing errors. The 

incomplete data often lead to inconsistent and biased estimations. For instance, the sample 

covariance matrix computed from incomplete data is likely to produce negative eigenvalues that 

in turn leads to an erratic result in statistical analyses (Schneider, 2001). One could use only 
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complete data, but this could induce significant bias if missing data are not identically distributed. 

Also, many hydrologic models need seamless records to simulate continuous historical events. 

Thus, the first step in hydrologic analysis and modeling is to fill in missing gaps. 

Various statistical methods have been developed to fill in missing values: First, the 

simplest method is to replace missing values with a mean, median, or mode of recorded data. 

This approach is often used in water quality data analyses. However, care should be taken to 

avoid insertion of bias, especially when data are not “Missing At Random” (Batista and Monard, 

2003). Second, single or multiple linear regression models are most common in hydrology, 

where missing data are estimated based on the neighboring recorded data. This method often 

leads to underestimation of variance in space and time, if observations of two or more nearby 

sites are used (Salas, 1993). Third, time series models, such as autoregressive models, can be 

used to fill in missing observations if data are serially correlated or no other concurrent 

information from nearby sites are available (Salas, 1993). Forth, Batista and Monard (2003) 

examined the use of the k-nearest neighbor (KN) algorithm to make up for missing data. They 

demonstrated, from their experimental analyses using four Machine Learning Datasets from UCI 

Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html), that estimates based on the 

KN algorithm outperforms the simple mean or mode replacement method. The KN algorithm 

uses a mean of k-nearest neighbors as a best estimate. This method needs no explicit model to be 

built. However, this method is expensive because searching for the set of similar instances over 

the entire model domain is non-trivial. The estimated values by the KN algorithm induce 

unessential bias when the strong correlations exist among data. 

As an alternative but more elaborate approach than the above methods, one could apply 

the expectation-maximization (EM) algorithm (Dempster et al., 1977; Schneider, 2001). This 
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method is a very powerful statistical technique designed specifically for incomplete data. The 

EM algorithm basically minimizes the error estimates of the likelihood function of a 

representative model for given data in an iterative manner. In order to estimate missing values 

and to estimate mean and covariance matrix, the EM algorithm iterates both expectation and 

maximization steps until the stopping criteria are satisfied. Usually, the EM algorithm 

underdetermines the conditional expectation of missing values given the available (complete) 

data. This is the case when data are severely missing so that the EM algorithm could not estimate 

adequate model parameters (Schneider, 2001). When the number of variables exceeds the 

number of records, the regularization method is used to make up the deficiency of the EM 

algorithm. Schneider (2001) tested the regularized EM algorithm with surface temperature data. 

He showed that the regularized EM algorithm leads to more accurate estimates of the missing 

values compared with conventional methods. However, daily rainfall data are an intermittent 

process that is not easily handled by the EM algorithm. 

The alternating process of combination of rainy and no-rainy (zero value) sequences 

makes many statistical models impractical. For example, zeros in k-nearest neighbors cause a 

severe bias problem in estimating the neighboring values. They also result in a singular problem 

during matrix operations in an explicit model. The Markov-type models have been commonly 

applied to the intermittent daily rainfalls (Roldán and Woolhiser, 1982; Woolhiser and Roldán, 

1982; Rajagopalan et al., 1996; Woolhiser, 1992; Wilks, 1998). The Markov-type rainfall models 

comprise of two components; the first part models the occurrence of rainfall based on the state of 

previous day – a typical first-order Markov process. The next part handles the distribution of 

rainfall amounts on rainy days independently from the first component. To fill in missing data, 

one could take advantage of concurrent neighboring records by modifying the conventional 
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Markov-type models. In the subtropical area like South Florida, convective storms are dominant. 

The corresponding pattern of daily rainfall occurrence in this region is complex and nonlinear 

compared with those of frontal storms. In fact, the preliminary analysis of rain data in the region 

indicates that the spatial dependency of rainfall occurrence is quite stronger than the serial 

dependence of rainfall occurrence.  

Thus, the objective here is to develop a practical model to fill in missing daily rainfalls in 

South Florida. The model applies a pattern classification technique to determine the occurrence 

of rainfalls in space. The pattern classification used in the proposed model is expected to reduce 

the complexity of problems in estimating missing daily rainfalls. The next section describes 

briefly the rainfall monitoring network in South Florida and their statistical properties that are 

relevant to the structure of the proposed model. 

 

2. South Florida Rainfalls 

The study area is located in and around of the Everglades National Park (ENP) in South 

Florida. The area is classified as the humid subtropical climate zone, having a hot, humid, and 

wet summer. The wet season extends from June through October, while the dry season is from 

November to next May. An average annual rainfall in the ENP is about 1400 millimeters, among 

which about 70 per cent are concentrated on the wet season. Summer rainfalls are in the form of 

convective local thunderstorms. Tropical storms and hurricanes also play a significant role in 

increasing wet season rainfalls (Winsberg, 2004).  

Many local and federal governments including the ENP have been involving in the 

restoration of the Everglades under the name of the Comprehensive Everglades Restoration Plan 

(CERP) and other projects. The projects have been relying on various hydrologic models to 
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evaluate structural and operational alternatives. The models are often simulated at daily or less 

time steps because the surface water and groundwater systems in the area are directly connected 

and groundwater flows fast through a highly transmissible surficial aquifer (Tarboton et al., 

1999; Wasantha Lal, 2001). These models use daily rainfalls as input. However, daily rainfalls 

recorded in the area have many short breaks that needed to be filled in on a scientific basis before 

using them in the models.  

Currently, there are over 60 active rain gauges in the study area (Figure 1). Each station 

has different period of records. Most sites have data during the past 30 years, while couples of 

them have data back to early 1900s. Figure 2 shows the missing rate (the rate of missing days to 

recorded days) on each site. An average of missing rate is about 11 per cent, while a maximum 

rate is 32 per cent at western Florida Bay (station #60 in Figure 1). The missing rates during the 

wet and dry seasons are nearly identical. An average of rainy days per year is about 128 days 

(35%).  

 

3. Simple Rainfall Occurrence Processes 

In general, a daily rainfall model is consisted of two independent components - rainfall 

occurrence and rainfall depth. The conventional models rely on a stochastic process such as a 

first-order Markov model to handle the rainfall occurrence. Let us describe the concept of a 

conventional Markov model and a linear classification model to help understand the proposed 

neural network models. 

 

3.1. Conventional Random (RND) Model 

The RND approach relies on a single site Markov process without considering 
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neighboring measurements. Rainfall occurrence is determined by the state transition probabilities 

– the probability of being a wet day from a previous wet day or from a previous dry day. Wet/dry 

condition (ck(t)) of k-th station at day t is determined based on a critical transition probabilities 

(pc) and generated random number (0  u  1) from a uniform distribution (Roldán and 

Woolhiser, 1982; Hanson et al., 1994; Wilks, 1998). 
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The transition probabilities may vary over the year. The non-homogeneous property can be 

considered in the model by allowing the transition probabilities to vary systematically over the 

year using a Fourier series reconstruction (Roldán and Woolhiser, 1982). The RND method is for 

a single site model rather that a spatial model as will be introduced here.  

 

3.2. Classification-Based Models 

Figure 3 depicts the structure of the proposed model. Each gauged rainfall value is 

dichotomized into wet (  tck =1) or dry (  tck =0) state depending on whether the rainfall is 

greater or less than a rainfall measurement error (=0.25 millimeters), respectively. For each 

missing rainfall at a site on a day, a classifier determines whether the station is wet or dry. This 

step relies on the pattern classification of the spatial distribution of wet and dry stations, 

regardless of their magnitudes. The next step estimates the amount of rainfall if the station is 

turned out to be wet. The rainfall depth is estimated based on a multiple regression model using 

the concurrent neighboring measurements as independent variables. A preliminary data analysis 

shows that the amounts of rainfalls are remarkably correlated with the values at nearby stations 



 8

in most cases. Missing data in a given day are distributed randomly. Thus, the regression model 

to estimate rainfall depth needs to be constructed and estimated for each missing station 

separately, which is non-trivial. We adopted a preliminary classification process that spots and 

eliminates dry stations in advance in order to reduce such a laborious job. This process is turned 

out to be quite effective.   

The purpose of the classification is to partition the spatial domain into two rainfall 

occurrence states - rainy or no-rainy. A pattern classification identifies the spatial boundaries of 

two states, from which the state for each missing station is classified. There are many statistical 

classifiers that evaluate the values of objects based on their spatial statistical properties. The next 

subsection will first describe a simple linear discrimination analysis to help understand the 

concept of statistical discrimination. Then, four neural network-based nonlinear classifiers 

applicable to our rainfall models will be introduced.  

 

3.3. Linear Discriminant Analysis 

Let us define that a discriminant function,  xg , generalizes the pattern classification, 

where x is a feature vector that is the spatial information for rainfall occurrence in this case. 

Rainfall occurrence is a binary process such that a classifier assigns a feature vector to class 1c  

(wet) when if   0xg , or 2c  (dry) when   0xg . Linear discriminant analysis (LDA) is based 

on a combination of simple linear discriminant functions as 

  xwx g                    (2) 

where w  is a vector of weights that maximizes the ratio of between-groups variance to within-

groups variance (Cooley and Lohnes, 1971; Duda et al., 2000; Dudoit et al., 2000). Since  xg  is 

linear, the decision surface is a hyperplane which divides the space into two sub-spaces. The 
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linear discriminant function,  xg , is given as an algebraic measure of the distance from x  to the 

hyperplane (Duda et al., 2000).  

The LDA approach is simple to understand and easy to compute. However, the 

classification result of this method is too simple to characterize the complex wet-dry boundaries 

created by convective local thunderstorms in South Florida. For example, there are 24 stations 

available for pattern classification of rainfall occurrence on June 9, 1990 (Figure 4). In this case, 

we need a complex classifier using higher order nonlinear functions such as the curved line on 

Figure 4 in order to draw an appropriate wet-dry boundary.  

One may adopt a very sophisticate classifier that may lead to a perfect classification for a 

particular training set. However, this could often lead to overfitting and results in poor 

performance on new or future patterns. Technically, this phenomenon is called the vulnerability 

to variability of feature objects (Duda et al., 2000). With an appropriate nonlinear function and a 

proper generalization of pattern classification, an optimal decision boundary can be established 

to have sufficient accuracy of performance of both training and future data sets. Taking into 

account for this consideration, it deems that multilayer neural networks could provide an optimal 

solution to the classification of the occurrence of South Florida rainfalls.  

 

4. Structure of the Proposed Model  

The proposed model relies on a neural network classifier to model the condition of 

rainfall occurrence at missing stations. That is, the rainfall occurrence at missing site is 

determined based on the patterns of occurrence of multiple measurements from nearby stations. 

We propose to use the multilayer neural network (MNN) approaches (Figure 5). The MNN is a 

massive parallel-distributed processing system. This system consists of many artificial neurons 
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that are highly interconnected by weights (Haykin, 1994; Duda et al., 2000). Owing to its innate 

nonlinear property and flexibility for modeling and training (ASCE Task Committee, 2000), 

MNNs have been widely applied for solving the problems of function estimation, time series 

analysis, pattern recognition, and system control. 

In pattern classification problems, two-layer networks without hidden layer may be 

enough to form the decision boundaries of a binary problem. The decision boundaries in this case 

are composed of hyperplanes that have similar limitation to the LDA. Therefore, various MNNs, 

which have hidden layers as shown in Figure 5, have been developed to construct nonlinear 

decision boundaries for the pattern classification problems. The decision boundaries are achieved 

by the explicit discriminant function given as: 
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where m and n are the numbers of neurons in the hidden and the input layers, respectively. hf  

and of  are activation functions in the respective hidden and the output layers, jiw  and kjw  

denote the input-hidden layer weight and the output-hidden layer weight, respectively, and jow  

and kow  represent biases for the hidden and the output layers, respectively. We propose to use 

one of the following four neural network classifiers that are described briefly on the following 

subsections. More details on these approaches are found in Demuth and Beale (2000) and Duda 

et al. (2000). 

Once the state of rainfall occurrence is determined, the amount of rainfall is estimated 

day by day. A prior examination of our rainfall data reveals that the spatial correlation is more 

significant than the temporal one. Thus we prefer to use a multiple regression approach rather 

than a conventional Markov process. The spatial regression type model is given by: 
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   xfŷ                    (4) 

where ŷ  is the dependent variable representing the depth of rainfall at a missing station, x  a 

predictor matrix consisting of recorded rainfall depths at nearby stations, and   is a prediction 

error. We propose either stepwise regression, principal component regression, or MNN based 

approaches to model the rainfall depth. 

 

4.1. Levenberg-Marquardt Backpropagation (LMB) 

MNNs are trained to approximate any functions with optimizing the network weights, w . 

To train MNNs, the backpropagation algorithm has been applied successfully to solve difficult 

and diverse problems. Standard backpropagation is a gradient descent algorithm. The network 

weights are moved along the negative of the gradient of the performance function, cce ˆ . In 

this study, c  and ĉ  are vectors of measured and estimated class values, respectively. Then, the 

iterative training process is given as; 

gHww 1
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  kk                         (5) 

where kw  is the weight matrix at iteration k, g  is the gradient (
w
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g
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The standard backpropagation is often too slow to converge in practice. One of faster 

algorithms developed so far is the LMB algorithm. The LMB was designed to accelerate the 

training by eliminating the need to compute the Hessian matrix in Eq. 5. When the mean squared 

error is used as a performance function (e ), the Hessian matrix can be approximated by the 

Jacobian matrix ( J ), as JJH T . The corresponding gradient can be computed as eJg T . The 

LMB appears to be fast and efficient for training moderate-sized feedforward neural networks. 
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4.2. Automated Regulation Backpropagation (ARB) 

Overfitting could be of concern in MNN trainings. The network is trained with a set of 

data to have very small value of error. When new data set are presented, however, the network 

occasionally yields large errors. This is because the network has a remarkable memory on a 

training data set but not for general or new situations. The estimated weights in this case are 

tuned only for the specific training set. The overfitting occurs when insufficient training data are 

given or when the variability of data is significant. The overfitting problem may happen in daily 

rainfall modeling by various reasons. In the northwest corner of the area, the network density is 

relative low. Even in the dense gauging area, the number of the training data set is insufficient 

when there are many missing data. For instance, there are only 24 stations available on June 9, 

1990 (Figure 4). These undesirable circumstances make the estimated weights in the network 

sensitive to the network configuration data and feature values.  

One of ways to prevent the overfitting is to make regularization of a network. That is, the 

performance function is modified by adding a regularization parameter which combines the 

weighted mean square errors instead of using the mean squares of weights as in the previous case. 

The ARB algorithm determines a set of optimal regularization parameters during training the 

network until the effective weights and biases converge. 

 

4.3. Learning Vector Quantization (LVQ) 

This algorithm trains competitive layers automatically by clustering input vectors. The 

clusters that are found in competitive layers are dependent only on the distance between input 

and weight vectors. The LVQ network learns to classify input vectors into target classes chosen 
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by user in a supervised manner. The LVQ network has two layers - competitive layer (hidden 

layer) and linear layer (output layer). The competitive layer learns to cluster input vectors by 

assigning “1” to the winner neurons, or “0” to the others. The winner neurons are associated with 

the most positive element of the net input of a competitive layer. The elements of net input are 

the negative of the distances between input vector and the weight vector. The competitive layer 

then forms a cluster in which the similar input data are gathered. The linear layer transforms the 

competitive layers into target classifications (user input) through a training process that adjusts 

the weights in a competitive layer. 

 

4.4. Probabilistic Neural Networks (PNN) 

This approach consists of two layers. The first layer (hidden layer) links between input 

neurons and respective pattern neurons that are in turn connected to class neurons in the second 

layer (output layer). In the first layer, the distance vector from the input neurons to the pattern 

neurons is computed. The second layer sums these contributions for each class of inputs to 

produce its net output of a vector of probabilities. A compete transfer function is used in the 

second layer to pick the maximum of these probabilities and assign “1” for that class. “0” is 

assigned for the other classes.  

The PNN is trained by modifying the weights connecting the input neurons to the pattern 

neurons in a following way. The normalized pattern neurons are placed on the normalized input 

data such that jiji xw  , where jiw  is the weight connecting the ith input neuron to the jth pattern 

neuron, and jix  is the ith normalized input to the jth pattern neuron. If ix  is assigned to a kc  

class, then, 1kjw , or otherwise 0kjw . After training, the network is fully connected between 

the input neurons and the pattern neurons. The pattern neurons are identically connected to the 
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class neurons. The trained network is then used for pattern classification. The PNN is straight-

forward and does not need an iterative training. The PNN always guarantees convergence when a 

set of sufficient training data is given. 

 

5. Evaluation of Rainfall Occurrence Process 

This study tested four neural network-based classifiers (LMB, ARB, LVQ, and PNN), 

which are available as options on the MathWorks software (Demuth and Beale, 2000), for the 

classification step in the proposed model. Also tried are two simple approaches, namely RND 

and LDA as benchmarks. To test the classifiers in the proposed rainfall model, this study picked 

10 arbitrary stations that have low missing rate (see Figure 1 and 2). Table 1 lists summary 

statistics as well as missing rate at each selective station. Furthermore, this study selected two 

spatial rainfall sets (both wet and dry seasons) of 100 randomly selected days for which both 

rainy and no-rainy sites are adequately mixed to form the spatial pattern of rainfall occurrence on 

each day. The days having both all rainy stations and all no-rainy stations were excluded on this 

selection. Then, gaps on each data set were created artificially and randomly to mimic the real 

data having missing records (a missing rate of about 10 percent), so that the estimated rainfall 

values by the proposed model are compared with the corresponding measured values.  

 

5.1. A Number of Hidden Neurons 

In a pattern classification problem, the numbers of input neurons (n) and output neurons 

(k) are dependent on the dimensions of input and output. Hidden neurons link between input and 

output neurons. The number of hidden neurons (m), which determines the accuracy of decision 

boundary, is a key factor to govern the complex of a network. However, there is no established 
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method to determine m, nor any straight relation between m and the dimension of classification 

(Duda et al., 2000). It is well known that a convenient rule of thumb is to choose m value such 

that the total number of weights in a network is roughly a tenth of the number of data set (Duda 

et al., 2000). Experimental studies revealed that the networks having fewer hidden neurons than 

input neurons have worked well (Maier and Dandy, 2000). The number of inputs of the network 

for the classification (described in the next section) is not sufficient for the above considerations. 

A large m produces complex decision boundaries and takes long time to train the network. On 

the other hand, a small m creates too rough decision boundaries to get an accurate pattern 

classification. The m should be chosen to make tread-off between the accuracy of classification 

and the generalization of the network. This study set m as a half of the number of training sets, 

that is, m is a function of the number of available stations in this case, to gain substantial 

accuracy and flexibility to the problem.  

 

5.2. Input Features 

In the proposed model, a classifier determines daily rainfall occurrence based on the 

feature values (  nfxx ,,1 x , nf  is the number of features) that includes spatial covariates. The 

covariates to the rainfall could be geographical information (x-y coordinates) or physical features 

such as concurrent water level data. In South Florida, simulated daily water levels (surface 

ponding depth) from 1965 to 2000 on the 2 mile by 2 mile square grids are available (SFWMD, 

1999). The water levels are simulated with spatial rainfalls that are interpolated into grid values 

using the Triangular Irregular Network (TIN) method.  The co-located model-drive water levels 

are highly correlated to daily rainfall and thus be an excellent input feature to model the rainfall 

occurrence. Three combinations of input features were examined here: Option 1 employs x- and 
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y-coordinates of the station as input features (for example, at station #1,  111 y,xx , nf=2); 

Option 2 adopts the Option 1 features plus model-driven ponding depths (z) corresponding to the 

station (  1111 z,y,xx , nf=3); and Option 3 only uses a model-driven ponding depth (  11 zx , 

nf=1).  

 

5.3. Comparison of Alternative Approaches 

The output produced by a classifier is binary state of wet or dry in each missing site. To 

measure the performance of classifiers, we used the hit rate (H) which is an indicator of making 

correct wet and dry classifications among all trials (Wilks, 1995) as:  

D̂,DŴ,W
PPH                   (6) 

where 
Ŵ,W

P  is the probability of both observed and predicted occurrences are wet, and  
D̂,D

P  is 

the probability of both occurrences are dry. An asymptotic H value for a two-state pure random 

model is 0.5, while a maximum H value is 1.0 (a perfect model). 

Table 2 summarizes the hit rates by classifiers at an arbitrary selected station (#13). It 

should be noted that the RND is a single site model while the others are a spatial model. The 

conventional Markov model (RND) performs slightly better (about 9 per cent) than a pure 

random model, as its abbreviation implied. However, the classification models improve 

significantly compared with those of the RND model. Especially, very promising results are 

shown when neural network based classifiers are used. At this station, the PNN with the Option 2 

input features (x-y coordinates and model-driven stage) is superior to the other classifiers. The 

PNN has about 90 per cent of accuracy when it is used to classify rainfall occurrences. The H 

statistics for the other nine selected sites show the nearly identical improvements as observed at 

station #13. 
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Instead of presenting all performance statistics, Table 3 summarizes the best input feature 

option as well as classifier by site and by season. For example, at station #9, the ARB with the 

Option 3 input performs best on the wet season. In general, including model-driven stage to input 

feature (input Options 2 and 3) improves the performance of rainfall pattern classification. This 

general rule is not applicable to the site #44 which is located near the shore line so that stage is 

not influenced by the rainfall. For most stations, neural networks-based classifiers produce about 

85% hit rates, which are quite promising. The result indicates that selecting input features plays 

an important role and improves rainfall modeling. It should be noted that that the prediction of 

rainfall occurrence could be improved using more sophisticate input features such as, concurrent 

hydrologic measurements, radar data, cloud covers, soil moistures, or others. However, this 

additional task is out of scope here. Among the tested classifiers, the PNN is better for wet 

season prediction, while the LVQ outperforms for dry season prediction. Note that both the LVQ 

and the PNN have a competitive layer as a hidden layer to cluster input vectors in advance, 

which enhance the ability of the network for pattern classification.   

 

6. Evaluation of Rainfall Amount Process 

Michaelides et al. (1995) and Kalogirou et al. (1997) examined the applicability of 

MNNs to estimate the amount of missing rainfalls in Cyprus. One of the issues on the MNNs is 

computing time. Rainfalls are randomly missing in time and space. Thus, we need to build a 

model for each day at each missing site, requesting tremendous time and effort though feasible 

with the current computing capability. For instance, the computation times (Pentium IV with 3.2 

GHz) between a stepwise regression and a MNN model fitted to selective 100 missing data as a 

test run are 44 and 2319 seconds, respectively. There are a total of 9,400 (35%) rainy days out of 
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27,000 missing values from 63 stations. Expanding both approaches to all 9,400 missing values 

will take about 1.1 hours and 2.6 days, respectively. The stepwise regression is about 50 times 

faster than that of MNN at the same accuracy (the RMSE is 12.4 milimeters for both models). 

The effort that we have tried to make general training datasets for to save the computation time 

was unsuccessful since the data are missing at random in space and time. We concluded from 

this test that the MNN approaches are applicable for modeling rainfall occurrence but not very 

efficient for modeling rainfall depth.  

The dimension of our regression model is quite large because there are a large number of 

rainfall gages (N=63). Or, there will be a multicollinearity problem from some redundant sites if 

all recorded sites are used as independent sites. To solve these problems, two regression models 

were tested: stepwise regression and principal components regression. Stepwise regression relies 

on an automated search procedure to select significant predictors (Hamilton, 1992). This 

approach uses stopping rules based on F-statistics or p-values to increase R2. Principal 

components regression tries to model with reduced independent variables based on the 

information of a principal components (PCs) analysis. This approach selects and uses key 

component variables while accounting for patterns of variation among predictors. The advantage 

of using these two approaches is to make more parsimonious models without losing the accuracy 

of outcomes. 

The two regression models were evaluated by the following skill score (SS) which is a 

percentage improvement of root mean squared error (RMSE) over that of a reference model as 

(Wilks, 1995): 
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where pRMSE , rRMSE , and mRMSE  denote the RMSEs estimated with a perfect model, a 
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reference model, and an estimation model, respectively. The RMSE of an idealized perfect 

model ( pRMSE ) is zero. The reference model is the model to be served as a benchmark. The 

estimation model is the model constructed in this study.  

The distribution of spatial daily non-zero rainfalls in South Florida is positively skewed. 

This may create a heteroscedasticity problem in modeling. Thus, the data were log-transformed. 

We also tested the Box-Cox transformations, but it was inferior to the log-transformation (the 

result is not shown here). To avoid the addition of stations having different geographical features, 

10 nearest stations of the station of interest were selected in advance, and then regression 

analyses were performed. Table 4 shows the comparison of RMSEs for two different regression 

models. Overall, a stepwise regression outperforms the principal component regression. On 

average, the RMSE of both models are less than 1 per cent. Dry season errors are a half of wet 

season errors, but the relative errors will be opposite because the dry season rainfall is only 30% 

of the annual rainfalls. The errors in site #11 are higher than the other sites because it is isolated 

from the other sites.  

Table 5 summarizes the SS statistics of different simulations using a stepwise regression 

model, where the reference model uses a sample mean from neighboring sites as the best 

estimate. The log transformation increase about 4% on average. The performance of model with 

classification is superior to that of model without classification. Although the performances of 

the proposed model are poor at stations #13 and #14, the proposed model improved skill scores 

up to 30% and 10% compared with a mean replacement and the without classification model, 

respectively. The proposed model would improve the accuracy of conventional methods up to 

50% for estimating missing rainfall when a perfect classification is achieved. 

In summary, the probabilistic neural network (PNN) approach is recommended to model 
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rainfall occurrence in South Florida because it needs shorter training time with satisfactory 

performance. The learning rule of the PNN is relatively simple. That is, it needs only a single 

pass through the training data (Duda et al., 2000). The stepwise regression with a logarithm 

transformation is also recommended to estimate the amount of missing rainfalls. It has been 

argued that one of shortcomings of a rainfall model with a regression estimator is that it 

underestimates the spatial variability of estimated rainfalls compared with that of observed ones. 

However, this problem was solved by removing the effect of zero values on dry days on the 

regression. With the proposed model, we could estimate the missing value at less than one per 

cent error. 

 

7. Overall Performance Measures of the Proposed Model 

The previous two sections evaluate many alternative components of the proposed rainfall 

model. This section applied the model at all 63 stations to fill in actual gaps. The main focus in 

the model application here is to check whether the sample statistics are preserved without biases 

after filling in or not. Figure 6, for example, shows the comparisons of cumulative distributions 

of daily rainfalls in August at site #13. The raw data represent observed daily rainfalls on wet 

days and the filled-in data contains estimated daily rainfalls on missing wet days, which are not 

included in the raw data, using the proposed model. The missing rate on a given month is 31.8%, 

which is quite high. Although this case is one of extreme cases, there exist no significant 

differences between two distributions. The filled-in data passed the goodness-of-fit tests such as 

Chi-square and K-S test for all stations and all seasons (The test results are not shown here). 

Therefore the proposed model provides complete dataset for hydrologic analysis and modeling 

without distorting the distribution of data of interest. 
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Figures 7 through 8 show the changes of statistics before and after filling in. As similar to 

Figure 6, the raw data having observed daily rainfalls without missing values are used for the 

observed distributions, and the filled in data consisting of estimated daily rainfall on missing 

days using the proposed model are used for the estimated distributions. The results indicate that 

the proposed rainfall model has no significant bias on its estimates. Figure 7 is a typical rainfall 

occurrence problem where the wet-dry boundaries of both maps are the same, while a slight 

difference on the northern area is due to a technical interpolation problem. Missing rate on this 

date is 16 per cent. Figure 8 (a) is related to the rainfall occurrence. There is a spatial trend along 

the S-N direction: Low rainy days in the Florida Bay area, while high rainy days in the eastern 

coastal area. Figure 8 (b) is related to the rainfall amount. General trend along the N-S direction 

is preserved. The northern boundary has big changes, meaning that the proposed model should 

be careful for selecting the model boundary problem. It is safe to include more stations on the 

boundary if possible. In general, the differences of site statistics used in Figure 7 and 8 are 

dependent on the missing rate. However, this does not affect the distribution of primary statistics. 

The ANOVA test results (the test results are not shown here) indicate that the null hypothesis 

that the statistics from the observed (before filling in) and estimated (after filling in) distributions 

are same is not rejected. 

 

8. Conclusions 

The main objective of this study is to develop a daily rainfall model that will be used 

specifically to fill in missing daily rainfalls. To fill in missing gaps, we could take advantage of 

concurrent measurements. In fact, a preliminary analysis showed that the spatial dependence is 

more significant than the serial dependence in daily rainfall and thus the model was proposed on 
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that way. The proposed model is based on a two step approach: The first relies on a pattern 

classification technique to determine the occurrence of rainfall on a missing day. Then, the 

second step uses an explicit regression model to estimate the amount of rainfall if the station is 

wet. Both steps use the spatial information as inputs.  

A large portion of daily rainfall data is zero, which could introduce severe bias when the 

model is built in a straight way. The proposed model solved the intermittence by employing 

pattern classification as a prior step. A classifier evaluates the occurrence of missing stations 

using the spatial features of rainfall occurrence. Based on comparative studies performed in this 

study, a parsimonious model contributed to generalize the pattern classification for novel 

patterns, save the computation time, and provide sound estimates of the missing rainfall in the 

South Florida region. The result of validation revealed that the proposed model is robotic and 

unbiased.  

In this study, the use of model-driven data such as relative water stages providing 

physical interaction with rainfall lead to good pattern recognition for rainfall occurrence. In 

recent years, with the advance in computer technology, promising researches for data gathering 

have been taking place to examine the possibility for using satellite and remote sensed data to 

monitor atmospheric activities on the continental or global scale (see Heymsfield et al., 1996, 

Levizzani et al., 2002, and National Research Council, 2003). These satellite-driven or remote 

sensed data might provide estimates of the rainfall occurrence as well as the rainfall intensity 

even in ungauged sites and at less than daily interval. With overcoming great computational 

expenses of the integration of the data from the high resolution dynamical models with the local-

based indicator such as soil moisture, the more feasible and accurate imputation model could be 

developed. 
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 The proposed rainfall model has many components and ramifications to apply, which 

include data transformation, rainfall occurrence, estimating rain depths, neural network solvers, 

etc. We carefully tested each of the components and presented the best solution for South Florida 

rainfalls. The recommended modeling procedure presented here will be valid for the sub-tropical 

regions where convective storms are dominant. However, the procedure could be changed for 

different areas or different rainfall regimes and the effect would be expected to improve the 

ability of explicit model for rainfall depth. Further testing of proposed approach to the different 

climatic conditions remains to the readers of this paper. 
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Table 1. Summary statistics and missing rate at 10 selected stations used for model performance 

tests. 

Station 
ID 

Station 

Name 

Period of Record 

(Start year) * 

Daily Max 

(mm) 

Annual Mean 

(mm) 
Missing Rate 

(%) 

7 EVC 1949 368 1389 4.5 

9 FLA 1962 208 1211 0.1 

10 FMB 1949 233 1345 0.3 

11 G54 1957 267 1452 1.8 

13 IFS 1914 213 1507 17.8 

14 JB 1991 345 985 6.5 

18 MIAMIFS 1914 310 1294 1.4 

32 P35 1982 272 1389 13.0 

41 RPL 1949 243 1466 2.1 

44 S20F 1968 202 1210 1.1 

Average**  244 1385 10.6 

* The common ending date of records is December 31, 2003. The data of 1965-2000 were used 

for sample statistics. 

** Average values for all (63) stations in the study area. 
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Table 2. Hit rates at station #13 to measure performances of each classifier and input features to 

estimate rainfall occurrences. 

 

Station 

ID  

Input 

Feature 

Option* 

Conventional Model Neural Network-Based Model 

RND LDA LMB ARB LVQ PNN 

13 

(IFS) 

1 0.585 0.720 0.750 0.810 0.720 0.750 

2 0.585 0.695 0.820 0.795 0.820 0.895 

3 0.585 0.735 0.840 0.760 0.780 0.875 
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Table 3. The best input option and classifier by site, which have been selected based on the hit 

rate that measures performance of rainfall occurrence estimates.  

Station 

ID  

Wet Season 

(Jun.-Oct) 

Dry Season 

(Nov.-May) 

Input Option Classifier Input Option Classifier 

7 1, 2 LDA, PNN 2 LVQ 

9 3 ARB 3 LVQ 

10 3 PNN 3 LVQ 

11 2 LDA 2 LDA 

13 2 PNN 2 PNN 

14 1 PNN 2 LVQ 

18 3 LDA 2 ARB 

32 2 PNN 2 LVQ 

41 1 LMB, PNN 2 ARB 

44 1 PNN 1 ARB 
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Table 4. Root mean square error (in mm) statistics of the estimated rainfalls using the proposed 

rainfall model, where S-Reg. is the stepwise regression and PC-Reg. is the principal component 

regression. 

Station ID 
Wet Season Dry Season Yearly 

S-Reg. PC-Reg. S-Reg. PC-Reg. S-Reg. PC-Reg. 

7 9.5 9.4 5.9 6.7 7.9 8.2 

9 8.9 9.3 6.8 8.0 7.9 8.7 

10 10.5 12.2 2.7 3.8 7.7 9.1 

11 18.3 18.3 14.1 13.2 16.4 15.9 

13 6.7 13.0 5.6 10.5 6.2 11.8 

14 9.5 11.6 3.7 6.0 7.2 9.3 

18 6.3 12.3 5.2 8.0 5.8 10.4 

32 9.5 11.0 3.5 5.1 7.1 8.6 

41 11.2 13.3 5.2 7.2 8.7 10.7 

44 9.6 10.5 3.3 3.1 7.2 7.7 

Average 10.0 12.1 5.6 7.2 8.2 10.0 
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Table 5. Skill score (%) of models for estimating rainfall depths with a step-wise regression 

model. 

Station 

ID  

Rainfall Depth Model 

(w/o transform) 

Rainfall Depth Model 

(w/ log-transform) 
Occurrence & 
Depth Models  

Observed 
Occurrence & 
Depth Models  

7 -0.9 8.6 9.7 14.2 

9 0.9 10.0 11.2 13.3 

10 12.4 14.4 16.8 19.2 

11 2.7 3.7 5.0 5.8 

13 31.4 28.0 29.2 30.6 

14 25.2 23.6 23.8 32.8 

18 42.8 43.4 44.0 49.0 

32 7.8 12.8 14.3 17.9 

41 7.4 13.5 15.7 17.4 

44 -3.0 5.3 6.9 12.1 
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Figure 1. Rainfall stations (dots) in South Florida, where 10 sites (dot with ID number (7-44)) are 

selected for testing the proposed model. 
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Figure 2. Missing rate at each station. 
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Iteration Loop
• For i-th station and J-th

day rainfall, Pi,j.

Classification
• On j-th day, 
• Group wet stations into class C1
• Group dry stations into class C2
• Construct a classification model
• Determine the state of Pi,j.

Estimation
• Find available data set

X = [X1, …, Xn]
• Construct estimation model

Y = fn(X)

Is Pi,j wet or dry ?

Is Pi,j missing ?

Pi,j = 0

Pi,j = Y

Yes

Wet

Dry

Begin

End

No

 

Figure 3. Structure of the proposed daily rainfall model for estimating missing gaps. 
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Missing Station
Wet Stations
Dry Stations

 

Figure 4. Sample rainfall occurrence boundary on June 9, 1990 on which 24 measurements 

available (dot and x marks). The straight line indicates an imaginary linear boundary to classify 

the rainy/no-rainy boundary, while the curved line is an imaginary nonlinear boundary based on 

measured data.  
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Figure 5. Typical schematic diagram of three-layer neural networks.  
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Figure 6. Comparison of cumulative distributions between raw data and filled-in data for August 

at station #13. 
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Figure 7. Rainfall distributions on June 18, 1999 (a) before (b) after filling in missing rainfalls. 
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Figure 8. Spatial distributions of a number of wet days (a) and annual mean rainfalls (b). 

 

 

 


